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For a circular sector system consisting of an elastic shell to which an incompressible and viscous
liquid layer is attached, the coupled liquid-structure frequencies are determined under zero
gravity conditions. The influence of the viscosity of the liquid, the flexibility of the shell, the
thickness of the liquid layer and the Ohnesorge number have been determined for freely slipping
and anchored contact lines. With increasing shell flexibility the oscillation frequencies decrease
and exhibit a smaller magnitude for a viscous liquid than for a frictionless liquid. In addition, we
observe a phenomenon not present in a system with frictionless liquid, involving regions of only
aperiodic motion. In these regions, depending mainly on viscosity (Ohnesorge number) and
liquid layer thickness, the hydroelastic system cannot perform any oscillatory motion. A motion
identification chart is presented showing that for large Ohnesorge number Oh,(ol2/pa)1@2
only very thick liquid layers are able to perform oscillatory motions. Increasing the flexibility of
the shell results in an increased region of aperiodic motion.

( 1998 Academic Press Limited
1. INTRODUCTION

THE ERA OF THE INTERNATIONAL SPACE STATION where systems are exposed to longer periods of
a zero or microgravity environment presents us with unique manufacturing and chemical
engineering processing possibilities, which by no means would be possible on earth under
normal gravity conditions. Cylindrical configurations seem to be the basic geometry that
will be employed in the structure of the system as well as in space experiments. Since the
structures should be light, they will by necessity be highly flexible. Moreover, they will
interact with liquids with a free surface.

Various investigations have been performed previously on rotating and nonrotating
liquids contained in rigid structures under normal or increased gravity conditions (Abram-
son 1966) and in a zero gravity environment (Bauer 1982). Investigations with no axial
(z)-dependency may be found in Bauer (1987a). In a cylindrical configuration, the liquid
column exhibits Rayleigh instability in the axisymmetric mode, becoming unstable if the
length equals or exceeds the length of the circumference of the column (Rayleigh 1882). This
889—9746/98/030367#19 $25.00/fl970138 ( 1998 Academic Press Limited
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is valid for frictionless, viscous, and even viscoelastic liquids (Bauer 1986, 1989). The
hydroelastic system, where the sloshing liquid interacts with the flexible structure has also
been treated for cylindrical structural systems with a liquid layer on the inside or outside of
the elastic cylindrical shell. Results of coupled liquid and coupled shell frequencies were
obtained for both a frictionless liquid (Bauer 1987b) and a viscous liquid (Bauer 1987c).
While in a z-independent circular cylindrical system no instability occurs, in a sector system
instability appears for certain apex angles (sector openings).

In addition, in many engineering areas, hydroelastic problems have become of in-
creasing interest; in most cases, the structures are thin, they are of high flexibility, and
they react with liquids with a free surface of close natural frequencies. In most investiga-
tions, however, experimental and theoretical analysis has been centred on upright
circular cylindrical containers [e.g., Yamaki et al. (1984), Lakis & Paı̈doussis (1971), and
many more].

Recently, the interaction of a sector-shell structure with a liquid layer consisting of
incompressible and frictionless liquid and placed in a zero gravity environment has been
treated (Bauer & Komatsu 1994). Two main cases for the contact lines at the straight rigid
sector walls, i.e., freely slipping and anchored edges were considered. It was found that the
natural liquid frequencies with anchored contact lines are larger than those with freely
slipping edges, and that thinner liquid layers exhibit decreased natural frequencies. In
addition, the uncoupled clamped shell frequencies decrease rapidly with increasing shell
radius. The coupled liquid and structural frequencies are lower, an effect that becomes more
pronouned for thin liquid layers. It was also found that the interaction effects are stronger if
the contact lines are anchored.

The aim of the present investigation is to find the influence of viscosity of the liquid upon
the coupled frequencies and to obtain more information on the effect of liquid layer
thickness, flexibility, and the Ohnesorge number, which is a measure of the combined effect
of liquid surface tension and viscosity. The side walls (radial walls) are considered rigid,
while the description of the shell motion is achieved by employing the Donnell shell
equation (Leissa 1973). The liquid layer is considered incompressible and viscous, exhibits
a liquid surface tension, and is considered either free to slip or develops anchored contact
lines at the side walls.

2. BASIC EQUATIONS

A viscous liquid in contact with an elastic structure performs hydroelastic damped vibra-
tions, if disturbed. The problem to be treated here is the determination of the coupled
frequencies of a viscous liquid of volume »

0
"na(a2!b2) inside or outside an elastic sector

shell. For small elastic displacements of the shell, m and g, and small velocity components of
the liquid, u and v, the governing equations may be linearized.

The motion of the liquid surrounding a sector shell (Figure 1) is obtained by solving the
Stokes equations:
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Figure 1. Geometry of the hydroelastic system.
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and the continuity equation
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In these equations, k is the dynamic viscosity and l"k/o the kinematic viscosity of the
incompressible liquid of density o. The flow velocity is given by v"ue

r
#veu , and

p represents the pressure distribution.
These equations have to be solved with the appropriate boundary conditions. At the rigid

side walls vanishing velocity, the following conditions must be satisfied:

u"0, v"0 at u"0 and 2na; (4)

while at the free liquid surface, the kinematic condition
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should be satisfied, where f"f(u, t) is the free liquid surface displacement and p
the liquid surface tension. In addition, the shear stress at the free liquid surface must
vanish, i.e.,
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If we denote the elastic deflection of the shell by m(u, t) in the radial direction and g(u, t)
in the circumferential direction, the equations of the cylindrical shell of infinite length may
(under the assumption of no motion in z-direction) be written (Leissa 1973) as
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where o6 is the mass density of the shell, vN is the Poisson ratio, E the elasticity modulus, h the
thickness of the shell, and DM "Eh/(1!lN 2). As we may notice, these equations are coupled
with the liquid motion on the right-hand side by pressure and shear forces. We have
employed a form of Donnell’s shell equations, which are widely used in shallow shell theory.
They could easily be extended into Flügge’s shell equations by supplying additional terms
in the r-direction.

3. METHOD OF SOLUTION

Since the foregoing set of equations cannot be solved exactly by analytical means,
we shall treat two cases approximately. In the first case, we abandon the boundary
condition u"0 at u"0 and 2na, and let the liquid slip at the rigid walls; all other
conditions will be satisfied. The second case abandons the same condition but enforces
the condition that the free liquid surface be anchored at u"0 and 2na. The first case is
called the freely slipping edge case; while the second case is called the anchored-edge
condition, f(0, t)"f(2na, t)"0. In addition, we shall investigate the uncoupled liquid and
shell cases.

3.1. UNCOUPLED VISCOUS LIQUID MOTION WITH FREELY SLIPPING EDGES

If the shell wall r"b is considered rigid, we deal only with the oscillation of a viscous liquid.
Consequently, equations (1)—(7) have to be solved simultaneously. For the case of freely
slipping edges we omit u"0 at u"0 and 2na. Introducing the stream function W (u, t),
such that the continuity equation (3) is identically satisfied, i.e.,
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we obtain, after eliminating the pressure from the Stokes equations (1) and (2), the partial
differential equation
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Applying the divergence operator to the Stokes equations yields the Laplace equation for
the pressure
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Next, considering the functional form
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According to equation (10) the velocity distribution is given by
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where the prime denotes differentiation with respect to r. It is noted that v"0 for u"0
and 2na.

The solution of equation (12) for the pressure distribution yields
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Combining the free surface conditions (5) and (6), after differentiation with respect to
time, yields the expression
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In addition, by introducing the pressure (17) and (16a, b) into the Stokes equation, we obtain
the relation between the constants A
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With the boundary condition at the rigid shell wall at r"b, i.e.,

u"v"0 at r"b, (20)

we obtain the equations for m"1, 2,2
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The shear stress at the surface of the liquid, i.e., equation (7), yields
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Finally, the combined free surface condition (18) results in equation
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The vanishing coefficient determinant of equations (21a, b), (22) and (23) represents the
frequency equation, which may be used for the determination of the damped liquid
frequencies S. It should be emphasized here again that the adhesion condition at the
rigid wall boundaries u"0 and 2na has been abandoned and that, in the case treated
above involving slipping edges, the contact angle of the liquid surface (contact line) with
the wall is 1

2
n.

3.2. UNCOUPLED SHELL MOTION

Without liquid the right-hand sides of equations (8) and (9) vanish. With
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the characteristic equation, that has to be solved for the determination of j, reads

j6#j4(2#s)#j2C1#s A2!
12b2

h2 BD#s C1#
12b2

h2
(1!s)D"0, (25)

where

s,u2
oN (1!lN 2)b2

E
'0.

The solution of the bicubic equation (25) yields j
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boundary conditions of the clamped shell, i.e.,
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one obtains six algebraic equations, the vanishing coefficient determinant of which repres-
ents the frequency equation of the elastic shell [see Bauer & Komatsu (1994)].

3.3. UNCOUPLED VISCOUS LIQUID OSCILLATIONS WITH ANCHORED EDGES

In this case we omit the boundary condition u"0 at u"0, 2na, and we replace it by the
weaker condition, the stuck-edge condition of a vanishing liquid surface displacement at the
edge, i.e., f"0 at u"0, 2na. This anchored edge condition is satisfied by a sharp-edged rim
and a large tension (see Figure 1) of the liquid. It guarantees the vanishing liquid surface
displacement f"0 at locations u"0 and 2na. The adhesion condition is then only
satisfied at r"b and a (u"0) and not in the total region b(r(a. Since we deal, however,
with liquid of very low viscosity (l"10~6 m2/s for water), the neglected viscosity effect in
this region is (because of the very thin boundary layer) not too large. In any case, the radial
velocity u at the side walls for this weaker condition of an anchored case is quite reduced as
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compared to the case with the slipping assumption, thus yielding an improved approximate
solution of the posed hydroelastic problem. The previous solution (16a, b) satisfies the
Stokes equation, the continuity equation and the normal velocity boundary condition v"0
at u"0, 2na. With the free surface displacement
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The anchored edge condition f"0 at u"0, 2na gives two equations:
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and
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represents the frequency equation for the anchored-edge liquid case. Truncating this infinite
determinant to one of finite order gives the approximate value of the lower frequencies. It
should be noticed that the constants of equation (28) have been determined to satisfy the
anchored edge conditions f"0 at u"2na [see equation (32)].

3.4. COUPLED HYDROELASTIC SOLUTION WITH FREELY SLIPPING EDGES

In the coupled hydroelastic case, equations (8) and (9) with the right-hand side included i.e.,
with the influence of the viscous liquid taken into account, have to be solved. Substituting
equations (16) and (17) into these equations yields
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The solution is given by
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Introducing m and g from equations (35) and u and v from equations (16), the compatibil-
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When the shell is rigid, where the coefficients ea
m
, f a

m
, eb

m
, f b

m
, ec

m
, f c

m
, ed

m
and f d

m
become zero,

equations (38a, b) coincide with (21a, b). The vanishing coefficient matrix of the 4m homo-
geneous equations (22), (23) and (38a, b) for AM

m
, BM

m
, C

m
and D

m
yields the coupled

frequencies.

3.5. COUPLED HYDROELASTIC SOLUTION WITH ANCHORED EDGES

In the case of anchored edges, the solution procedure is almost the same with that of a freely
slipping case. The equations (22), (31a, b), (32) and, instead of (21a, b) for a rigid shell, (38a, b)
are employed for this case.

4. LIQUID INSIDE AN ELASTIC SHELL

If we want to treat the system consisting of an elastic shell at r"b and an inside liquid with
a free surface at r"a (a/b)1), we have to introduce a minus sign on the right-hand side of
equation (5). Accordingly, the equations corresponding to equation (5) must have a minus
sign on the appropriate terms. The process for determining the natural and coupled
frequencies is similar to that used in the liquid outside case.

5. NUMERICAL EVALUATION AND DISCUSSION

Some of the analytically obtained results have been evaluated numerically for various
parameters, i.e., the diameter ratio k"b/a, the flexibility parameter oN (1!lN 2)b2/E, the

Ohnesorge number Oh,Jol2/pa; where the apex angle 2na"1
2
n, shell thickness ratio

h/a"0)01 and density ratio oN /o"2 were taken. It was found previously (Bauer
& Komatsu 1994) that the undamped natural frequencies decrease with increasing diameter
ratio k"b/a, i.e., for decreasing liquid layer thickness. In addition, for higher mode
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frequencies this decrease is appreciable only for thinner liquid layers. It also was found that
the natural liquid frequencies for liquid layers with anchored contact lines are larger than
those for freely slipping edges.

In Figures 2 and 3 we represent the coupled oscillation frequencies of the viscous liquid
and structure as a function of the flexibility of the shell and compare it with the inviscid
liquid case. It may be noticed that for freely slipping edges, the fundamental damped natural
sloshing frequency is decreased by the presence of viscosity. In addition, a slight decrease of
the oscillation frequency is visible with the increase in flexibility of the structure. This shows
that with an increase in the magnitude of oN (1!lN 2)b2/E (or the decrease in Young’s
modulus E) the coupled sloshing oscillation frequency is slightly reduced, as has been found
previously for inviscid liquid (Bauer & Komatsu 1994). The coupled structural frequency, as
Figure 3. Effect of shell flexibility on the coupled frequencies with anchored edges: b/a"0.5, ol2/pa"10~5,
a"0.25, p/oa3"100, h/a"0.01, oN /o"2.

Figure 2. Effect of shell flexibility on the coupled frequencies with freely slipping edges: b/a"0.5,
ol2/pa"10~5, a"0.25, p/oa3"100, h/a"0.01, oN /o"2.
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shown in the right-hand curve of Figure 2, illustrates that viscosity results in a higher
coupled frequency; on the other hand, the coupled frequency is drastically reduced with
increasing flexibility of the structure.

For the case of anchored contact lines, the coupled oscillation frequencies are presented
in Figure 3. We notice that, in comparison with the inviscid liquid case, the coupled
fundamental sloshing frequency for viscous liquid is decreased considerably with increasing
flexibility of the structure. The coupled shell frequency shows a similar effect and is smaller
in the viscous case than for inviscid liquid.

In Figure 4, the real ( — — — ) and imaginary (——) parts of the fundamental coupled
sloshing frequency are presented as a function of the diameter ratio k"b/a, with ol2/pa as
a parameter. First of all we notice that the increase in the damping decay (real part) and
decrease of the oscillation frequency (imaginary part) as the thickness of the liquid layer is
decreased, i.e., k"b/a is increased. The influence of the Ohnesorge number Oh is also
presented. The increase of the Ohnesorge number increases the decay magnitude and
decreases the oscillation frequency.

In Figure 5 the results for the fundamental sloshing frequency are shown for anchored
contact lines. The physical trends are the same, except for larger magnitudes in comparison
with the freely slipping case. In addition, we notice a region where only aperiodic motion is
possible, for large aspect ratio k"b/a.

In Figure 6 the real and imaginary parts of the fundamental sloshing root sJp/oa3 for
freely slipping contact lines are presented as a function of the Ohnesorge number
(Oh)2,ol2/pa. Two cases are presented: for uncoupled liquid motion, and for the hy-
droelastic case with an elastic wall at r"b. First of all we notice that, with increasing
Ohnesorge number Oh, the decay magnitude increases, while the oscillation frequency
decreases, reaching finally a vanishing magnitude which indicates that both roots become of
Figure 4. Effect of viscosity (Ohnesorge number) and layer thickness on the fundamental coupled frequency
with freely slipping edges: oN (1!lN 2)b2/E"10~6, a"0.25, p/oa3"100, h/a"0.01, oN /o"2.



Figure 5. Effect of viscosity (Ohnesorge number) and layer thickness on the fundamental coupled frequency
with anchored edges: oN (1!lN 2)b2/E"10~6, a"0.25, p/oa3"100, h/a"0.01, oN /o"2.

Figure 6. Complex frequency and influence of viscosity of the fundamental coupled and uncoupled vibration
mode with freely slipping edges: oN (1!lN 2)b2/E"10~6, b/a"0.75, a"0.25, p/oa3"100, h/a"0.01, oN /o"2.
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negative real magnitude. Therefore, only aperiodic motion is possible in this range. The
inclusion of elasticity yields a slightly reduced decay magnitude and a moderately decreased
oscillation frequency in comparison with the uncoupled liquid case. The region of only
aperiodic motion starts at a small Ohnesorge number, indicating that elasticity enhances
the aperiodic motion. This fact is expressed in a more lucid form in the motion-identifica-
tion graph of Figure 7, where the fundamental sloshing behaviour is shown for the freely
slipping edge case as a function of the diameter ratio k"b/a. We notice here that for large
Ohnesorge numbers, the aperiodic motion appears over a large range of liquid layer



Figure 7. Motion-identification graph for the fundamental vibration mode with freely slipping edges:
oN (1!lN 2)b2/E"10~6, a"0.25, p/oa3"100, h/a"0.01, oN /o"2.
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thickness, while small Ohnesorge numbers are associated with decaying oscillatory liquid
behaviour. Again, we see that the uncoupled liquid boundary is above that for the case with
the elastic circular wall.

In addition, we notice an increase in the aperiodic region with increasing flexibility. The
increase of the shell flexibility may be interpreted as a decrease of the stiffness of a spring k.

The damping ratio f"c/2Jmk (c being the damping and m the mass) therefore increases,
thus yielding an enlarged region in which only aperiodic motion is possible. A further
increase of the flexibility oN (1!lN 2)b2/E would produce another curve for the coupled
motion in Figure 7, located below the one indicated, thus increasing the region of aperiodic
motion even further.

6. CONCLUSIONS

The most important conclusions of the above study may be summarized as follows.
(i) The natural damped frequencies of the sloshing liquid are higher for anchored contact

lines than for freely slipping edges.
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(ii) The damped liquid oscillation frequencies are smaller than the natural frequencies of
the inviscid liquid case.

(iii) With increasing flexibility of the shell, the oscillation frequencies decrease; they are
smaller for viscous liquid case than for invisicid liquid case.

(iv) Increasing k"b/a, i.e., decreasing the liquid layer thickness, raises the decay
magnitude and diminishes the oscillation frequencies; these frequencies are higher for the
anchored contact lines case than for the freely slipping case.

(v) Increasing the Ohnesorge number Oh,Jol2/pa results in a stronger decay magni-
tude and a higher decrease of oscillation frequencies.

(vi) For large Ohnesorge numbers, the system exhibits a larger range of liquid thick-
nesses where only aperiodic motion is possible. For small Oh, only a thin layer is able to
perform aperiodic motion; while in most of the k-range, oscillatory motion can take place.

(vii) The uncoupled natural frequencies of the shell decrease considerably with increasing
shell radius b (Bauer & Komatsu 1994).

(viii) The liquid produces a strong decrease on the coupled shell oscillation frequencies,
which is mainly due to the effect of the added liquid mass.

(ix) For thin liquid layers the effect of the sloshing interaction on the elastic frequency is
more pronounced.

(x) The interaction effects are more pronounced for liquid with anchored contact lines,
since the natural frequency of the liquid is larger than that for freely slipping edges and
therefore closer to that of the shell.
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APPENDIX: NOMENCLATURE

a radius of the equilibrium position of the free liquid surface
b radius of the shell
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DM ["Eh/(1!lN 2)]
E Young’s modulus of elasticity
h shell thickness
I
m@2a, K

m@2a modified Bessel functions of first and second kind (of order m/2a)
k ("b/a) ratio of radii
Oh Ohnesorge number (,Jol2/pa)
p liquid pressure
r, u polar coordinates
s complex frequency (S,sa2/l), s"pN $iuN
t time
u, v velocity components of the liquid in the radial and circumferential direction,

respectively
2na apex angle of sector system
f radial free surface displacement
k dynamic viscosity
l kinematic viscosity
lN Poisson ratio
m, g radial and circumferential shell deflection, respectively
o density of liquid
oN density of shell
oN (1!lN 2)/E flexibility parameter
p liquid surface tension
qru shear stress
W stream function
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